Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Toxicol Rep ; 10: 357-366, 2023.
Article in English | MEDLINE | ID: mdl-36923444

ABSTRACT

Mucopolysaccharidosis Type IIIB (MPS IIIB) is an ultrarare, fatal pediatric disease with no approved therapy. It is caused by mutations in the gene encoding for lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). Tralesinidase alfa (TA) is a fusion protein comprised of recombinant NAGLU and a modified human insulin-like growth factor 2 that is being developed as an enzyme replacement therapy for MPS IIIB. Since MPS IIIB is a pediatric disease the safety/toxicity, pharmacokinetics and biodistribution of TA were evaluated in juvenile non-human primates that were administered up to 5 weekly intracerebroventricular (ICV) or single intravenous (IV) infusions of TA. TA administered by ICV slow-, ICV isovolumetric bolus- or IV-infusion was well-tolerated, and no effects were observed on clinical observations, electrocardiographic or ophthalmologic parameters, or respiratory rates. The drug-related changes observed were limited to increased cell infiltrates in the CSF and along the ICV catheter track after ICV administration. These findings were not associated with functional changes and are associated with the use of ICV catheters. The CSF PK profiles were consistent across all conditions tested and TA distributed widely in the CNS after ICV administration. Anti-drug antibodies were observed but did not appear to significantly affect the exposure to TA. Correlations between TA concentrations in plasma and brain regions in direct contact with the cisterna magna suggest glymphatic drainage may be responsible for clearance of TA from the CNS. The data support the administration of TA by isovolumetric bolus ICV infusion to pediatric patients with MPS IIIB.

2.
Rev. habanera cienc. méd ; 20(2): e3465, mar.-abr. 2021. tab, graf
Article in Spanish | LILACS, CUMED | ID: biblio-1251796

ABSTRACT

Introducción: El Síndrome Sanfilippo B es un error innato en el metabolismo lisosomal, con herencia autosómica recesiva. Se caracteriza por facie ligeramente tosca, deterioro neurológico progresivo y poca repercusión somática, provocado por mutaciones en el gen NAGLU, cuyo locus es 17q21.2. La incidencia internacionalmente es muy baja y en Cuba solo se han diagnosticado siete pacientes desde 1985. Objetivo: Describir las manifestaciones clínicas, bioquímicas y moleculares de un paciente cubano diagnosticado con Síndrome Sanfilippo B. Presentación de Caso: Se describió un paciente de 13 años, cuyas principales manifestaciones clínicas fueron: facie ligeramente tosca, sinofris, alteraciones de conducta y deterioro neurológico progresivo. El trastorno del sueño fue ocasional y frecuente las infecciones respiratorias. Se demostró la presencia de colitis ulcerativa y pólipo intestinal. Se confirmó excreción aumentada de heparán sulfato y disminución de la actividad enzimática N-acetil αD-glucosaminidasa. Se identificó la mutación c.640dupC en el gen NAGLU en homocigosis en el paciente y ambos padres resultaron ser portadores. Conclusiones: Predominaron las alteraciones de conducta, deterioro neurológico progresivo e infecciones respiratorias en el caso reportado; siendo la colitis ulcerativa y el pólipo intestinal un hallazgo no descrito anteriormente para esta enfermedad. Los estudios cromatográficos y enzimáticos resultaron positivos para Sanfilippo B. El genotipo de este paciente resultó ser homocigótico para una nueva variante alélica patogénica en el gen NAGLU. Se demostró la segregación mendeliana de la mutación en la familia(AU)


Introduction: Sanfilippo syndrome type B is an autosomal recessive lysosomal storage disease. The frequent clinical manifestations include slightly coarse facial features, progressive neurodegeneration and mild somatic repercussion caused by mutations in the NAGLU gene, whose locus is 17q21.2. The worldwide incidence is very low and only seven patients have been diagnosed in Cuba since 1985. Objective: To describe clinical, biochemical and molecular characteristics of a Cuban patient with the diagnosis of Sanfilippo Syndrome type B. Case presentation: A 13 years old patient was described. The main clinical manifestations included mild coarse facie, synophrys, behavior disturbances, and progressive neurologic deterioration. Intermittent sleep disturbance and frequent upper respiratory infections were identified. Ulcerative colitis and intestinal polyp were demonstrated. Increased excretion of heparan sulfate and very low N-acetyl α-Dglucosaminidase activity were confirmed. In addition, the presence of mutation c.640dupC in NAGLU gene was identified. The patient had homozygous genotype and both parents were heterozygous. Conclusions: Behavioral alterations, progressive neurological deterioration and respiratory infections predominated in the reported case. Other findings such as ulcerative colitis and intestinal polyps were not previously described in this disease. The chromatographic and enzymatic studies were positive for Sanfilippo type B. This patient's genotype was found to be homozygous for a novel pathogenic allelic variant in the NAGLU gene. Mendelian segregation of the mutation in the family was demonstrated(AU)


Subject(s)
Humans , Male , Adolescent , Respiratory Tract Infections , Lysosomal Storage Diseases , Mucopolysaccharidosis III/genetics , Genotype , Mutation/genetics
3.
Arch. argent. pediatr ; 119(2): e138-e141, abril 2021. ilus
Article in Spanish | LILACS, BINACIS | ID: biblio-1152037

ABSTRACT

La mucopolisacaridosis tipo III B es una enfermedad de depósito lisosomal causada por la deficiencia de la enzima N-acetil-alfa-d-glucosaminidasa, implicada en el catabolismo del heparán sulfato, que produce su acúmulo en diversos tejidos. Se presenta a un paciente de 8 años, afectado de mucopolisacaridosis tipo III B, con historia de diarrea crónica y hallazgos endoscópicos e histológicos compatibles con linfangiectasia intestinal. Tras tratamiento dietético con restricción de ácidos grasos de cadena larga y rica en triglicéridos de cadena media, presentó mejoría clínica, mantenida hasta la actualidad.La patogenia de la diarrea crónica en pacientes con mucopolisacaridosis tipo III B es aún desconocida. Debe investigarse la presencia de linfangiectasia intestinal en estos pacientes e iniciar, en caso de confirmarse, un tratamiento dietético adecuado para mejorar así su calidad de vida.


Mucopolysaccharidosis type IIIB is a lysosomal storage disease caused by a deficiency of the N-acetyl-alpha-d-glucosaminidase enzyme involved in the catabolism of heparan sulfate, causing its accumulation in various tissues. We present an 8-year-old patient with mucopolysaccharidosis type IIIB, with a history of chronic diarrhea and endoscopic and histological findings compatible with intestinal lymphangiectasia. After a dietary treatment with a low-fat diet supplemented with medium-chain triglyceride, our patient presents clinical improvement until today. The pathogenesis of chronic diarrhea in patients with mucopolysaccharidosis type IIIB is still unknown. The presence of intestinal lymphangiectasia in these patients should be investigated, and appropriate dietary treatment should be initiated, if confirmed, to improve their quality of life.


Subject(s)
Humans , Male , Child , Lymphangiectasis, Intestinal/diagnostic imaging , Lysosomal Storage Diseases , Mucopolysaccharidosis III , Diet, Fat-Restricted , Diarrhea , Lymphangiectasis, Intestinal/therapy
4.
Drug Deliv Transl Res ; 10(2): 425-439, 2020 04.
Article in English | MEDLINE | ID: mdl-31942701

ABSTRACT

BMN 250 is being developed as enzyme replacement therapy for Sanfilippo type B, a primarily neurological rare disease, in which patients have deficient lysosomal alpha-N-acetylglucosaminidase (NAGLU) enzyme activity. BMN 250 is taken up in target cells by the cation-independent mannose 6-phosphate receptor (CI-MPR, insulin-like growth factor 2 receptor), which then facilitates transit to the lysosome. BMN 250 is dosed directly into the central nervous system via the intracerebroventricular (ICV) route, and the objective of this work was to compare systemic intravenous (IV) and ICV delivery of BMN 250 to confirm the value of ICV dosing. We first assess the ability of enzyme to cross a potentially compromised blood-brain barrier in the Naglu-/- mouse model and then assess the potential for CI-MPR to be employed for receptor-mediated transport across the blood-brain barrier. In wild-type and Naglu-/- mice, CI-MPR expression in brain vasculature is high during the neonatal period but virtually absent by adolescence. In contrast, CI-MPR remains expressed through adolescence in non-affected non-human primate and human brain vasculature. Combined results from IV administration of BMN 250 in Naglu-/- mice and IV and ICV administration in healthy juvenile non-human primates suggest a limitation to therapeutic benefit from IV administration because enzyme distribution is restricted to brain vascular endothelial cells: enzyme does not reach target neuronal cells following IV administration, and pharmacological response following IV administration is likely restricted to clearance of substrate in endothelial cells. In contrast, ICV administration enables central nervous system enzyme replacement with biodistribution to target cells.


Subject(s)
Acetylglucosaminidase/administration & dosage , Acetylglucosaminidase/genetics , Blood-Brain Barrier/chemistry , Insulin-Like Growth Factor II/administration & dosage , Mucopolysaccharidosis III/drug therapy , Receptor, IGF Type 2/metabolism , Recombinant Fusion Proteins/administration & dosage , Acetylglucosaminidase/therapeutic use , Administration, Intravenous , Animals , Disease Models, Animal , Enzyme Replacement Therapy , Female , Infusions, Intraventricular , Insulin-Like Growth Factor II/therapeutic use , Male , Mice , Mice, Transgenic , Mucopolysaccharidosis III/genetics , Primates , Recombinant Fusion Proteins/therapeutic use , Translational Research, Biomedical
5.
J Reprod Immunol ; 115: 6-13, 2016 06.
Article in English | MEDLINE | ID: mdl-27064211

ABSTRACT

We previously established an anti-mouse sperm auto-monoclonal antibody, Ts4, which shows immunoreactivity against several kinds of glycoproteins in the acrosomal region of epididymal spermatozoa, testicular germ cells, and early embryo, via binding to an epitope containing a common N-linked oligosaccharide (OS) chain on the molecules. In mice, we have already demonstrated that the OS chain in the epitope for Ts4 is a fucosylated agalacto-complex-type biantennary glycan carrying bisecting N-acetylglucosamine. In the testis, one of the specific OS chain-conjugated molecules is TEX101, a germ cell-marker glycoprotein, which is expressed in spermatocytes, spermatids, and testicular spermatozoa, but not in epididymal spermatozoa. In this study, we identified a Ts4-reactive glycoprotein in mouse cauda epididymal sperm. An immunoprecipitation method together with liquid chromatography-tandem mass spectrometry showed that alpha-N-acetylglucosaminidase (Naglu; a degradation enzyme of heparan sulfate) is one of the glycoproteins recognized by Ts4 in the epididymal spermatozoa. Western blot and immunohistochemical analyses revealed that mouse Naglu exists in two forms (82 and 77kDa) and is expressed in the acrosomal region and the flagellum of cauda epididymal sperm. Of the two Naglu-forms expressed in sperm, Ts4 immunoreacted against only the 82-kDa form located on the acrosomal region. The Ts4 mAb and anti-Naglu pAb negatively affected mouse fertilization in vitro. In addition, Ts4 inhibited sperm acrosome reaction induced by heparan sulfate. The Ts4-recognized fucosylated agalactobiantennary complex-type glycan with bisecting N-acetylglucosamine and Naglu on cauda epididymal spermatozoa may play a role in the process of fertilization.


Subject(s)
Acrosome/metabolism , Epididymis/pathology , Epitopes/metabolism , Infertility/immunology , Spermatozoa/metabolism , Acrosome/immunology , Acrosome Reaction/immunology , Animals , Antibodies, Monoclonal/metabolism , Autoantibodies/metabolism , Autoimmunity , Cells, Cultured , Female , Male , Mice , Mice, Inbred ICR , Spermatozoa/immunology , Spermatozoa/pathology
6.
Mol Metab ; 2(2): 74-85, 2012.
Article in English | MEDLINE | ID: mdl-24199146

ABSTRACT

MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. However, their potential role in the central regulation of whole-body energy homeostasis is still unknown. In this study we show that the expression of Dicer, an essential endoribonuclease for miRNA maturation, is modulated by nutrient availability and excess in the hypothalamus. Conditional deletion of Dicer in POMC-expressing cells resulted in obesity, characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism and alterations in the pituitary-adrenal axis. The development of the obese phenotype was paralleled by a POMC neuron degenerative process that started around 3 weeks of age. Hypothalamic transcriptomic analysis in presymptomatic POMCDicerKO mice revealed the downregulation of genes implicated in biological pathways associated with classical neurodegenerative disorders, such as MAPK signaling, ubiquitin-proteosome system, autophagy and ribosome biosynthesis. Collectively, our results highlight a key role for miRNAs in POMC neuron survival and the consequent development of neurodegenerative obesity.

SELECTION OF CITATIONS
SEARCH DETAIL
...